Argumentwise invariant kernels for the approximation of invariant functions

نویسندگان

  • David Ginsbourger
  • Xavier Bay
  • Olivier Roustant
  • Laurent Carraro
چکیده

We consider the problem of designing adapted kernels for approximating functions invariant under a known finite group action. We introduce the class of argumentwise invariant kernels, and show that they characterize centered square-integrable random fields with invariant paths, as well as Reproducing Kernel Hilbert Spaces of invariant functions. Two subclasses of argumentwise kernels are considered, involving a fundamental domain or a double sum over orbits. We then derive invariance properties for Kriging and conditional simulation based on argumentwise invariant kernels. The applicability and advantages of argumentwise invariant kernels are demonstrated on several examples, including a symmetric function from the reliability literature. Résumé. Nous considérons le problème d’approximation par méthodes à noyaux de fonctions invariantes sous l’action d’un groupe fini. Nous introduisons les noyaux doublement invariants, et montrons qu’ils caractérisent les champs aléatoires centrés de carré intégrable à trajectoires invariantes, ainsi que les espaces de Hilbert à noyau reproduisant de fonctions invariantes. Deux classes particulières de noyaux doublement invariants sont considérées, basées respectivement sur un domaine fondamental ou sur une double somme sur les orbites. Nous établissons ensuite des propriétés d’invariance pour les modèles de Krigeage et les simulations consitionnelles associés. L’applicabilité et les avantages de tels noyaux sont illustrés sur plusieurs exemples, incluant une fonction symétrique issue d’un problème de fiabilité des structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Width invariant approximation of fuzzy numbers

In this paper, we consider the width invariant trapezoidal and triangularapproximations of fuzzy numbers. The presented methods avoid the effortful computation of Karush-Kuhn-Tucker Theorem. Some properties of the new approximation methods are presented and the applicability of the methods is illustrated by examples. In addition, we show that the proposed approximations of fuzzy numbers preserv...

متن کامل

Integral Properties of Zonal Spherical Functions, Hypergeometric Functions and Invariant

Some integral properties of zonal spherical functions, hypergeometric functions and invariant polynomials are studied for real normed division algebras.

متن کامل

Invariant functions for solving multiplicative discrete and continuous ordinary differential equations

In this paper, at first the elemantary and basic concepts of multiplicative discrete and continous differentian and integration introduced. Then for these kinds of differentiation invariant functions the general solution of discrete and continous multiplicative differential equations will be given. Finaly a vast class of difference equations with variable coefficients and nonlinear difference e...

متن کامل

An Approach to Deriving Maximal Invariant Statistics

Invariance principles is one of the ways to summarize sample information and by these principles invariance or equivariance decision rules are used. In this paper, first, the methods for finding the maximal invariant function are introduced. As a new method, maximal invariant statistics are constructed using equivariant functions. Then, using several equivariant functions, the maximal invariant...

متن کامل

SEMIGROUP ACTIONS , WEAK ALMOST PERIODICITY, AND INVARIANT MEANS

Let S be a topological semigroup acting on a topological space X. We develop the theory of (weakly) almost periodic functions on X, with respect to S, and form the (weakly) almost periodic compactifications of X and S, with respect to each other. We then consider the notion of an action of Son a Banach space, and on its dual, and after defining S-invariant means for such a space, we give a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013